资源类型

期刊论文 194

会议视频 2

年份

2023 13

2022 20

2021 31

2020 16

2019 16

2018 5

2017 7

2016 2

2015 5

2014 4

2013 7

2012 3

2011 2

2010 6

2009 13

2008 6

2007 9

2006 6

2005 2

2004 5

展开 ︾

关键词

光纤通信 3

玻璃 3

光纤传感技术 2

复合材料 2

大块金属玻璃 2

整体穿刺 2

玻璃钢 2

纤维 2

60 GHz;封装天线;共面波导馈电环形谐振器;玻璃集成无源器件;超表面天线;小型化天线 1

AF/PSTM 1

ANSYS 1

FRP 聚合物 1

PBO纤维片材 1

PDMS 1

PIC16F877A 1

PSTM图像分解 1

PSTM数值模拟 1

PSTM消假像 1

RS—485总线 1

展开 ︾

检索范围:

排序: 展示方式:

Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete

Atheer H.M. ALGBURI, M. Neaz SHEIKH, Muhammad N.S. HADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 998-1006 doi: 10.1007/s11709-019-0533-7

摘要: This study examines the properties of fiber-reinforced reactive powder concrete (FR-RPC). Steel fibers, glass fibers, and steel-glass hybrid fibers were used to prepare the FR-RPC. The non-fibrous reactive powder concrete (NF-RPC) was prepared as a reference mix. The proportion of fibers by volume for all FR-RPC mixes was 1.5%. Steel fibers of 13 mm length and 0.2 mm diameter were used to prepare the steel fiber-reinforced RPC (SFR-RPC). Glass fibers of 13 mm length and 1.3 mm diameter were used to prepare the glass fiber-reinforced RPC (GFR-RPC). The hybrid fiber-reinforced RPC (HFR-RPC) was prepared by mixing 0.9% steel fibers and 0.6% glass fibers. Compressive strength, axial load-axial deformation behavior, modulus of elasticity, indirect tensile strength, and shear strength of the RPC mixes were investigated. The results showed that SFR-RPC achieved higher compressive strength, indirect tensile strength and shear strength than NF-RPC, GFR-RPC, and HFR-RPC. Although the compressive strengths of GFR-RPC and HFR-RPC were slightly lower than the compressive strength of NF-RPC, the shear strengths of GFR-RPC and HFR-RPC were higher than that of NF-RPC.

关键词: reactive powder concrete     steel fiber     glass fiber     hybrid fiber    

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 576-594 doi: 10.1007/s11709-021-0728-6

摘要: Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength, serviceability, and durability. However, the fatigue shear performance of such beams is unclear. Therefore, beams with hybrid longitudinal bars and hybrid stirrups were designed, and fatigue shear tests were performed. For specimens that failed by fatigue shear, all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack. For the specimen that failed by the static test after 8 million fatigue cycles, the static capacity after fatigue did not significantly decrease compared with the calculated value. The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase. The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar, and the failure modes were different. Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear, and failed owing to shear.

关键词: fatigue     shear     hybrid stirrups     hybrid reinforcement     fiber-reinforced polymer    

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 742-753 doi: 10.1007/s11709-021-0732-x

摘要: This study investigates the use of glass fiber-reinforced polyester (GRP) pipe powder (PP) for improving the bearing capacity of sandy soils. After a series of direct share tests, the optimum PP addition for improving the bearing capacity of soils was found to be 12%. Then, using the optimum PP addition, the bearing capacity of the soil was estimated through a series of loading tests on a shallow foundation model placed in a test box. The bearing capacity of sandy soil was improved by up to 30.7%. The ratio of the depth of the PP-reinforced soil to the diameter of the foundation model (H/D) of 1.25 could sufficiently strengthen sandy soil when the optimum PP ratio was used. Microstructural analyses showed that the increase in the bearing capacity can be attributed to the chopped fibers in the PP and their multiaxial distribution in the soil. Besides improving the engineering properties of soils, using PP as an additive in soils would reduce the accumulation of the industrial waste, thus providing a twofold benefit.

关键词: shallow foundation     sandy soil     bearing capacity     soil improvement     pipe powder    

Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite

Surinder Kumar GILL, Meenu GUPTA, P. S. SATSANGI

《机械工程前沿(英文)》 2013年 第8卷 第2期   页码 187-200 doi: 10.1007/s11465-013-0262-x

摘要:

Machining of plastic materials has become increasingly important in any engineering industry subsequently the prediction of cutting forces. Forces quality has greater influence on components, which are coming in contact with each other. So it becomes necessary to measure and study machined forces and its behavior. In this research work, experimental investigations are conducted to determine the effects of cutting conditions and tool geometry on the cutting forces in the turning of the unidirectional glass fiber reinforced plastics (UD-GFRP) composites. In this experimental study, carbide tool (K10) having different tool nose radius and tool rake angle is used. Experiments are conducted based on the established Taguchi’s technique L18 orthogonal array on a lathe machine. It is found that the depth of cut is the cutting parameter, which has greater influence on cutting forces. The effect of the tool nose radius and tool rake angles on the cutting forces are also considerably significant. Based on statistical analysis, multiple regression model for cutting forces is derived with satisfactory coefficient (R2). This model proved to be highly preferment for predicting cutting forces.

关键词: unidirectional glass fiber reinforced plastics (UD-GFRP) composites     machining     cutting forces (tangential     feed and radial force)     ANOVA     regression modeling     carbide tool (K10)    

Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 834-850 doi: 10.1007/s11709-021-0743-7

摘要: The concept of steel sheet glass fiber reinforced polymer (GFRP) composite bar (SSGCB) was put forward. An optimization plan was proposed in the combined form of SSGCB. The composite principle, material selection, and SSGCB preparation technology have been described in detail. Three-dimensional finite element analysis was adopted to perform the combination form optimization of different steel core structures and different steel core contents based on the mechanical properties. Mechanical tests such as uniaxial tensile, shear, and compressive tests were carried out on SSGCB. Parametric analysis was conducted to investigate the influence of steel content on the mechanical properties of SSGCB. The results revealed that the elastic modulus of SSGCB had improvements and increased with the rise of steel content. Shear strength was also increased with the addition of steel content. Furthermore, the yield state of SSGCB was similar to the steel bar, both of which indicated a multi-stage yield phenomenon. The compressive strength of SSGCB was lower than that of GFRP bars and increased with the increase of the steel core content. Stress-strain curves of SSGCB demonstrated that the nonlinear-stage characteristics of SSGCB-8 were much more obvious than other bars.

关键词: steel sheet GFRP composite bar     combination form     numerical modeling     mechanical properties test     strength    

煤矿立井玻璃钢复合材料罐道的研究

曾宪桃,郭晋蒲

《中国工程科学》 2002年 第4卷 第12期   页码 71-76

摘要:

针对煤矿立井井筒装备腐蚀严重的现状,研究开发了一种新型的玻璃钢复合材料罐道,该罐道采用一种经改性后的具有抗静电、阻燃、耐磨损的玻璃钢,部分地取代了钢材。对这种罐道的耐腐蚀特性、耐磨损特性、玻璃钢与钢材层合面纵向抗剪性能等进行了研究。试验和分析表明,玻璃钢复合材料罐道中,玻璃钢与钢材能协调工作,其耐腐蚀性能满足煤矿井筒使用要求,耐腐蚀寿命与耐磨损寿命同步,均能达到30年以上。

关键词: 立井     玻璃钢     罐道    

玻璃纤维复合材料新生态复合技术

回显权

《中国工程科学》 2002年 第4卷 第4期   页码 93-94

摘要:

现代结构材料正向复合化方向发展。复合材料发展的关键在于开创低成本、高可靠性的复合技术。 将玻璃纤维复合材料由传统的后期复合改为新生态的早期复合,可降低复合成本和提高可靠性。

关键词: 复合材料     早期复合     单纤维复合     纤维力学效应     界面效应     树脂薄膜效应    

Investigation of the parameters affecting the behavior of RC beams strengthened with FRP

Kadir SENGUN; Guray ARSLAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 729-743 doi: 10.1007/s11709-022-0854-9

摘要: Three-point bending tests were carried out on nineteen Reinforced Concrete (RC) beams strengthened with FRP in the form of completely wrapping. The strip width to spacing ratios, FRP type, shear span to effective depth ratios, the number of FRP layers in shear, and the effect of stirrups spacing were the parameters investigated in the experimental study. The FRP contribution to strength on beams having the same strip width to spacing ratios could be affected by the shear span to effective depth ratios and stirrups spacing. The FRP contributions to strength were less on beams with stirrups in comparison to the tested beams without stirrups. Strengthening RC beams using FRP could change the failure modes of the beams compared to the reference beam. In addition to the experimental study, a number of equations used to predict the FRP contribution to the shear strength of the strengthened RC beams were assessed by using a limited number of beams available in the literature. The effective FRP strain is predicted by using test results, and this prediction is used to calculate the FRP contribution to shear strength in ACI 440.2R (2017) equation. Based on the statistical values of the data, the proposed equation has the lowest coefficient of variation (COV) value than the other equations.

关键词: carbon     glass     strengthening     shear strength     reinforced concrete beam     fiber reinforced polymer    

Predetermination of potential plastic hinges on reinforced concrete frames using GFRP reinforcement

Dominik KUERES; Dritan TOPUZI; Maria Anna POLAK

《结构与土木工程前沿(英文)》 2022年 第16卷 第5期   页码 624-637 doi: 10.1007/s11709-022-0832-2

摘要: In the past, glass fiber-reinforced polymer (GFRP)-reinforcement has been successfully applied in reinforced concrete (RC) structures where corrosion resistance, electromagnetic neutrality, or cuttability were required. Previous investigations suggest that the application of GFRP in RC structures could be advantageous in areas with seismic activity due to their high deformability and strength. However, especially the low modulus of elasticity of GFRP limited its wide application as GFRP-reinforced members usually exhibit considerably larger deformations under service loads than comparable steel-reinforced elements. To overcome the aforementioned issues, the combination of steel and GFRP reinforcement in hybrid RC sections has been investigated in the past. Based on this idea, this paper presents a novel concept for the predetermination of potential plastic hinges in RC frames using GFRP reinforcement. To analyze the efficiency of the concept, nonlinear finite element simulations were performed. The results underscore the high efficiency of hybrid steel-GFRP RC sections for predetermining potential plastic hinges on RC frames. The results also indicate that the overall seismic behavior of RC structures could be improved by means of GFRP as both the column base shear force during the seismic activity as well as the plastic deformations after the earthquake were considerably less pronounced than in the steel-reinforced reference structure.

关键词: glass fiber-reinforced polymer     GFRP     hybrid section     plastic hinge     seismic design     reinforced concrete    

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0968-8

摘要: Fiber-reinforced polymers (FRPs) have received considerable research attention because of their high strength, corrosion resistance, and low weight. However, owing to the lack of ductility in this material and the quasi-brittle behavior of concrete, FRP-reinforced concrete (FRP-RC) beams, even with flexural failure, do not fail in a ductile manner. Because the limited deformation capacity of FRP-RC beams depends on the ductility of their compression zones, the present study proposes using a precast confined concrete block (PCCB) in the compression zone to improve the ductility of the beams. A control beam and four beams with different PCCBs were cast and tested under four-point bending conditions. The control beam failed due to shear, and the PCCBs exhibited different confinements and perforations. The goal was to find an appropriate PCCB for use in the compression zone of the beams, which not only improved the ductility but also changed the failure mode of the beams from shear to flexural. Among the employed blocks, a ductile PCCB with low equivalent compressive strength increased the ductility ratio of the beam to twice that of the control beam. The beam failed in pure flexure with considerable deformation capacity and without significant stiffness reduction.

关键词: ductility     four-point bending test     glass fiber-reinforced polymer     precast confined concrete block    

An investigation into the properties of ternary and binary cement pastes containing glass powder

Marcelo Frota BAZHUNI, Mahsa KAMALI, Ali GHAHREMANINEZHAD

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 741-750 doi: 10.1007/s11709-018-0511-5

摘要: The properties of binary and ternary cement pastes containing glass powder (GP) were examined. Hydration at early age was evaluated using semi-adiabatic calorimetry and at late ages using non-evaporable water content and thermogravimetric analysis. The transport characteristic was assessed by measuring electrical resistivity. The binary paste with slag showed the highest hydration activity compared to the binary pastes with GP and fly ash (FA). The results indicated that the pozzolanic behavior of the binary paste with GP was less than that of the binary pastes with slag or FA at late ages. An increase in the electrical resistivity and compressive strength of the binary paste with GP compared to other modified pastes at late ages was observed. It was shown that GP tends to increase the drying shrinkage of the pastes. Ternary pastes containing GP did not exhibit synergistic enhancements compared to the respective binary pastes.

关键词: cement paste     glass powder     pozzolanic reaction     supplementary cementitious material    

粘贴玻璃钢加固混凝土组合梁挠度研究

段敬民,钱永久,曾宪桃

《中国工程科学》 2004年 第6卷 第10期   页码 79-82

摘要:

将一定几何尺寸的玻璃钢板粘贴在混凝土梁的受拉区,能有效地提高混凝土梁的抗弯承载能力和混凝土梁的横向刚度。通过解析的方法,分别考虑组合梁在3种不同受力状态下,对玻璃钢板中拉力进行解析,得到了组合梁在不同载荷作用下的挠度表达式。

关键词: 粘贴加固     玻璃钢     混凝土组合梁     挠度    

Precision glass molding: Toward an optimal fabrication of optical lenses

Liangchi ZHANG,Weidong LIU

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 3-17 doi: 10.1007/s11465-017-0408-3

摘要:

It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pa·s due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

关键词: precision glass molding     optical lens     constitutive modeling     optimization     manufacturing chain     Industry 4.0    

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 376-382 doi: 10.1007/s11709-010-0086-2

摘要: Pre-tensioned high strength trusses using alloy steel bar are widely used as glass wall supporting systems because of the high degree of transparency. The breakage of glass panes in this type of system occurs occasionally, likely to be due to error in design and analysis in addition to other factors like glass impurity and stress concentration around opening in a spider system. Most design does not consider the flexibility of supports from finite stiffness of supporting steel or reinforced concrete beams. The resistance of lateral wind pressure of the system makes use of high tension force coupled with the large deflection effect, both of which are affected by many parameters not generally considered in conventional structures. In the design, one must therefore give a careful consideration on various effects, such as support settlement due to live loads and material creep, temperature change, pre-tension force, and wind pressure. It is not uncommon to see many similar glass wall systems fail in the wind load test chambers under a design wind speed. This paper presents a rigorous analysis and design of this type of structural systems used in a project in Hong Kong, China. The stability function with initial curvature is used in place of the cubic function, which is only accurate for linear analysis. The considerations and analysis techniques are believed to be of value to engineers involved in the design of the structural systems behaving nonlinearly.

关键词: tension system     glass wall     nonlinear analysis     pre-tensioning     second-order analysis    

Progress of three-dimensional macroporous bioactive glass for bone regeneration

Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 470-483 doi: 10.1007/s11705-012-1217-1

摘要: Bioactive glasses (BGs) are ideal materials for macroporous scaffolds due to their excellent osteoconductive, osteoinductive, biocompatible and biodegradable properties, and their high bone bonding rates. Macroporous scaffolds made from BGs are in high demand for bone regeneration because they can stimulate vascularized bone ingrowth and they enhance bonding between scaffolds and surrounding tissues. Engineering BG/biopolymers (BP) composites or hybrids may be a good way to prepare macroporous scaffolds with excellent properties. This paper summarizes the progress in the past few years in preparing three-dimensional macroporous BG and BG/BP scaffolds for bone regeneration. Since the brittleness of BGs is a major problem in developing macroporous scaffolds and this limits their use in load bearing applications, the mechanical properties of macroporous scaffolds are particularly emphasized in this review.

关键词: bioactive glass     biopolymer     bone regeneration     macroporous scaffolds     tissue engineering    

标题 作者 时间 类型 操作

Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete

Atheer H.M. ALGBURI, M. Neaz SHEIKH, Muhammad N.S. HADI

期刊论文

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

期刊论文

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

期刊论文

Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite

Surinder Kumar GILL, Meenu GUPTA, P. S. SATSANGI

期刊论文

Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber

期刊论文

煤矿立井玻璃钢复合材料罐道的研究

曾宪桃,郭晋蒲

期刊论文

玻璃纤维复合材料新生态复合技术

回显权

期刊论文

Investigation of the parameters affecting the behavior of RC beams strengthened with FRP

Kadir SENGUN; Guray ARSLAN

期刊论文

Predetermination of potential plastic hinges on reinforced concrete frames using GFRP reinforcement

Dominik KUERES; Dritan TOPUZI; Maria Anna POLAK

期刊论文

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

期刊论文

An investigation into the properties of ternary and binary cement pastes containing glass powder

Marcelo Frota BAZHUNI, Mahsa KAMALI, Ali GHAHREMANINEZHAD

期刊论文

粘贴玻璃钢加固混凝土组合梁挠度研究

段敬民,钱永久,曾宪桃

期刊论文

Precision glass molding: Toward an optimal fabrication of optical lenses

Liangchi ZHANG,Weidong LIU

期刊论文

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

期刊论文

Progress of three-dimensional macroporous bioactive glass for bone regeneration

Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU

期刊论文